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APPLICATION OF STATISTICS TO CONCRETE QUALITY CONTROL1 

Introduction 

The importance of concrete strength as an indicator of not only the 
load-carrying capacity of a structure but also other characteristics 
such as durability and permeability is well known. Provisions for 
insuring adequate strength are included in specifications in the form 
of either a specified strength requirement or a procedure for closely 
controlling the concrete mix. In the application of either type of 
provision, the sampling and testing of the concrete becomes a major 
element of inspection. 

Standardized specification provisions and standard methods of sampling 
and testing have been developed to aid in such control. However, in 
the administration of contracts involving concrete structures, the 
interpretation of acceptance requirements varies considerably. Methods 
for analyzing test results are apparently not widely understood. Even 
when the basis of acceptance is reasonably interpreted, the accuracy 
and validity of the test data often are not known. As a result confu- 
sion often develops whenever the concrete appears to fail any element 
of the acceptance requirement. Lack of understanding of methods of 
analysis has led to both erroneous rejection and erroneous acceptance 
of concrete0 

The resolution of such problems is impossible unless: (1) sufficient 
numbers of samples are tested, (2) standard methods of sampling and 
testing are followed, (3) test results are analyzed by valid statis- 
tical methods, and (4) the accuracy of test results can be demonstrated. 

The American Concrete Institute's committee on evaluation of compres- 
sion test results has warned that: 

"Because of the possible disparity between the strength 
of test specimens and the load carrying capacity of a 
structure, it is dangerous to place too much reliance on 
inadequate strength data. It is also wrong to conclude 
that the strength of a structure is in jeopardy when a 
single test fails to meet specified strength requirements. 
Random variations and occasional failures to comply with 
strength requirements are inevitable. Accordingly inflexi- 
ble strength requirements are unrealistic and control of 
the pattern of results rather than individual values is 
the most appropriate basis for both specifications and the 
general assessment of results." 

1 This technical release was prepared by H. L. Cappleman, Jr., Assistant 
Chief, Design Branch. 
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Their report (AC1 Standard 214) presents an excellent discussion of 
statistical analysis of concrete test results and the statistical 
meaning of various specification requirements. 

The purpose of this technical release is to amplify those portions of 
that report that are most directly applicable to Service operations. 
A review of pertinent statistical relationships is given followed by 
a discussion of their practical application. 

Review of Statistical Relationships 

DISPERSION AND STANDARD DEVIATION 

If the values of a series of strength tests of a given concrete mix at 
a given age (for example, 28-day strength) are plotted versus the 
frequency of occurrence of each value in the series, a considerable 
dispersion of the points about the average strength value will be 
noted. The order of occurrence of the various values in the series is 
unpredictable. No single test value can be considered to be the true 
strength of the batch it represents; however, within the limits of 
accuracy of the test series, the average value can be considered to 
indicate the strength of the concrete produced during the period of 
time represented by the test series. The amount of dispersion must be 
considered in the determination of the probable accuracy of the com- 
puted average value. An increase in dispersion indicates a decrease 
in probable accuracy of the mean. 

The probable accuracy of the mean can be deduced by comparing the 
relative frequency of small errors with the relative frequency of 
large errors (as indicated by the dispersion of the plotted points 
about the average value), Mathematically, this can be done by deter- 
mining the standard deviation (or root-mean-square deviation) of the 
series. The standard deviation (S) is computed by extracting the 
square root of the average of the squares of the deviations of the 
individual test values from their average (it), or: 

(Xl - zp + (x, - Q2 . . . . 0 (x, - a2 
s= 

n-l 

/y . . . (1) 

Where : X, , X, , -- X, = individual test values 

XX = the sum of all test values 
n = thenumber of tests 

. 
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a FREQUENCY DISTRIBUTION 

. 

The curve drawn to envelop the points on the plot of strength versus 
frequency of occurrence is called the frequency-distribution curve. 
If the plotted values are free from appreciable systematic errors 
(that is, if uniformity of materials, batching, mixing, handling and 
sampling are reasonably controlled), then the dispersion is caused 
mainly by accidental errors in the manufacturing and testing process 
and the frequency-distribution curve will conform closely to the shape 
of a normal probability curve. 

As shown in Figure 1, a normal probability curve (or normal frequency- 
distribution curve) is a symetrical, bell-shaped curve having the 
apex located at the average test value. If y is the frequency of any 
test value, X, the equation of the normal frequency-distribution curve 
is stated as: 

Y 
= yoeA%ta 

. . . ..o........o..*...a....o.... (2) 

Where: y0 = frequency corresponding to the 
mean test value, Z 

= the sdgnificance ratio 

S = standard deviation 

LEVEL OF CONFIDENCE 

The usefulness of the frequency-distribution curve as an indicator of 
the quality of the material represented by the test series is derived 
from a unique characteristic: The ratio of the area under the normal 
frequency-distribution curve between I? and a given value of X to the 
total area under the curve equals the probability that a test value 
selected at random will liebetween 2 and X. The probabilities corre- 
sponding to various values of the significance ratio, t, have been 
computed and are available in statistical tables. 
are usually expressed in percent. 

The probabilities 
In that form a probability is 

usually called the level of confidence. In other words, the level of 
confidence is the percent chance that any randomly selected value in 
a series will lie within the range of X * tS. 

Of equal importance in concrete specifications is the expression of 
the chance of tests falling below a specified minimum value. This 
method of expression is simply a variation of the expression of the 



level of confidence. It is important to remember that the two means 
of expression are intimately related. Equivalent expressions are 
summarized in Table 1, below. 

TABLE 1. Equivalent Ways of Expressing Level of Confidence 

Percentage of Tests 
Falling Within the 

Limits of R ,+ tS 

Chances of Tests 
Falling Below the 

il - Limit of tS 

50 2.5 in 10 
60 2 in 10 
70 1.5 in 10 
80 1 in 10 
90 1 in 20 
95 1 in 40 
99.9 1 in 2000 

SIGNIFICANCE RATIO 

At the same level of confidence the significance ratio, t, will vary 
with the number of samples-in the series. With good control in sampling 
technique, the reliability of the test data increases with the number 
of samples. In other words, the degree of conformance (or fit) of the 
frequency-distribution curve to the normal probability curve depends on 
the number of samples in the series--the more samples, the better fit. 
Usually, the fit is good if the test series contains at least 25 samples. 
When the series contains less than 25 samples, the assumption of normal 
frequency distribution is not valid. When less than 25 samples are 
involved, the value of "t" must be corrected to allow for some degree 
of variance from normal frequency distribution. 

A table of "t" values corresponding to various levels of confidence and 
numbers of samples is contained in AC1 Standard 214. A partial abstract 
of the values consistent with the more commonly used specification require- 
ments is contained in Table 2. 

TABLE 2. Values of 'It" 

No. of 
Samples 
Minus 1 

Chances of Tests Falling Below ii - tS 

2 in 10 1 in 10 1 in 200 1 in 2000 

4 0.941 1.533 4.604 12.94 
5 0.920 1.476 4.032 8.61 
6 0.906 1.440 3.707 6.86 
7 0.896 1.415 3.499 5.96 
8 0.889 1.397 3.355 5.40 
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TABLE 2. Values of "t" (cont.) 

No. of 
Samples 
Minus 1 

9 
l 10 

15 
20 
25 
30 
co 

Chances of Tests Falling Below g - tS 

2 in 10 1 in 10 1 in 200 1 in 2000 

0.883 1.383 3.250 5.04 
0.879 1,372 3,169 4.78 
0.866 1.341 2.947 4.07 
0.860 1.325 2.845 3.88 
0.856 1.316 2.787 3.75 
0.854 1.310 2.750 
0.842 1.282 2.576 3.29 

COEFFICIENT OF VARIATION 

In statistical analysis it is often convenient to express the measure 
of dispersion of test results in dimensionless terms. For this purpose, 
the coefficient of variation, V, is used as a means of expressing the 
ratio of the standard deviation, S, to the average strength, Z?. 

s 
V =- 7f . . . . . . . ..o.o...e..e............ (3) 

For convenience, "V" is often expressed in terms of percentage. When- 
ever "V" is expressed as a whole number, it must be recognized as a 
percentage value and not the ratio. 

CUMULATIVE DISTRIBUTION 

The cumulative distribution curve is determined by plotting the cumula- 
tive numbers of tests having values below various given strengths. 
Cumulative distribution curves for general statistical use can be 
plotted in terms of percentage of tests and percentage of average 
strength. When plotted on a probability scale such curves appear as 
straight lines. Figure 2 (a copy of Figure 3 of AC1 Standard 214) 
contains a group of cumulative distribution curves for different 
values of coefficients of variation, V. For any point on a given 
V-line, the ordinate shows the percentage of tests (in a long series) 
that can be expected to exhibit values greater than the value shown 
on the abscissa (expressed as a percentage of the average test value). 

WITHIN-TEST VARIATION 

When each test value in a series is determined by averaging the values 
of several samples, the range in values of the saple set can be used 
as an indicator of the accuracy of the sampling and testing technique. 
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The within-test standard deviation may be determined as: 

1 
s,= 7 0 ir 0..000.......0..0............0. (4) 

Where: S, = within-test standard deviation 

iii = average range in test value of 
groups of companion cylinders 

1 

d2 
= a constant depending on the number 

of samples in each set (for 2 samples, 
1 -= 
d2 

0.88; for 3 samples1 
d2 

= 0.59) 

The within-test coefficient of variation is determined as: 

% 
v, =y- 0.00.0000..0000.00..~......~.~.~* (5) 

here: ii = average value of the tests in the 
series 

To produce a reliable value of Vi, the analysis should be based on at 
least 10 sets of samples. For convenience, "Vl" is also often expressed 
in percent. 

Practical Application 

Only rarely is the frequency-distribution curve actually plotted in 
concrete quality control procedures. In normal construction operations, 
continuous inspection and supervision insure a reasonable amount of 
control (and suppression of systematic errors), The normal frequency 
distribution can usually be assumed as a practical basis for analysis 
of test results. The index factors for measuring the characteristics 
of the frequency-distribution curve corresponding to a given set of 
conditions can be determined and applied without plotting the curve 
itself. 

The previously discussed factors of level of confidence, significance 
ratio (t), standard deviation (%), average strength (ii), and number of 
samples (n) must all be considered in the analysis-of results. How 
these factors are applied in practical design and control of concrete 
mixes is discussed in the following paragraphs. 
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STANDARDS OF CONCRETE CONTROL 

The coefficient of variation, V, can be used as a measure of the over- 
all degree of control being achieved on a given project. A high 
coefficient indicates poor overall control of concrete manufacturing 
and testing operations; a low coefficient indicates good control. For 
general construction operations, the degree of overall control may be 
judged as shown in Table 3. 

TABLE 3. Standards of Concrete Control 

Value of "V" (%) Indicated Degree of Control 

Below 10 Excellent 
10 to 15 Good 
15 to 20 Fair 
Above 20 Poor 

In the application of these standards the value of "V," to be considered 
reliable, should be based on analysis of at least 10 tests. 

APPLICATION TO MIX DESIGN 

From the foregoing discussions it is apparent that for concrete to be 
acceptable its average strength must exceed the specified minimum 
strength by a margin adequate to compensate for the probable statis- 
tical variation in strength,, The required margin of strength will 
vary with: (1) the level of confidence required by the specification 
and (2) the degree of control exercised by the manufacturer. A means 
of predicting the required design strength of a concrete mix can be 
derived from the equation for the significance ratio, t, as follows: 

1. In Equation (Z), the significance ratio is defined as: 

t = z-x 
S 

2. If the specified strength, f:, is substituted for X 
and fhe required average strength, f,,, is substituted 
for X, the equation for 'It" becomes: 

(Note: In this expression the term f',' is used to 
denote specified strength to prevent confusion 
with the design strength which is denoted by f:.) 
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3. From Equation (3), it can be derived that: 

S = vz = Vf,, 

4. Substituting for "S," the equation for 'It," becomes: 

or, tVf,, = f,, - fy 

or, f,, - tVf,, = fy 

or, fcr(l - tV) = f; 

or, f,, = f'E 
1 - tv 

0..00.....0.(6) 

By use of Equation (6), the design strength of a concrete mix that is 
required to meet any given specification requirement can be predicted. 
The value of "V" must be estimated according to the anticipated degree 
of control (see Table 3). The value of "t" can be determined from 
Table 2 and must be commensurate with: (1) the level of confidence 
required by the specification and (2) the estimated number of samples 
to be used as a basis for determining compliance with strength require- 
ments. 

The level of confidence to be assumed depends on the wording of the 
specification. It is usually expressed in terms of the number of tests 
that can fall below a specified strength value, as demonstrated in the 
second column of Table 1. The level of confidence required by the 
specification has a considerable effect on mix 
The effect of the wording of the specification 
considering four cases commonly encountered in 

Case I. "Not more than 20 percent of the 
shall have values less than the specified 
Standard 318, for working stress design.) 

design requirements. 
may be demonstrated by 
practice: 

strength tests 
strength." (AC1 

Case II. "Not more than 10 percent of the strength tests shall 
have values less than the specified strength." (AC1 Standard 
318, for ultimate strength design and psestressed structures; 

I and ASTM-C94.) 

Case III. "No strength test shall have a value less than 
80 percent of the specified strength." (Federal Specifica- 
tion SS-C-618,) 
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Case IV. "No strength test shall have a value less than 
the specified strength." 

The required average strength, f,,, for Case I, Case II and Case IV 
can be computed directly from Equation (6). To put Equation (6) in a 
form compatible with Case III, it is necessary to express it in the 
following manner: 

f CT 
= OoSf; 

1 - tv . ..Q.O.....O*.O.O.e.~.~.~~. (7) 

Within the limits of practical precision, the values of "t" given in 
the fifth column of Table 2 may be used for Cases III and IV even 
though they represent a frequency-distribution curve that includes 
only 99.9 percent of the test values in the series instead of 100 
percent. 

As a base of reference, assume that each analysis concerns Class 2500 
concrete and a test series consisting of 16 tests. From Table 2, 
values of "t" corresponding to 16 samples are: (1) for Case I, 0.87; 
(2) for Case II, 1.35; and (3) for Cases III and IV, 4.07. The com- 
puted values of "fcr" for the various cases for various degrees of 
control are compared in Table 4. Further, assuming an air-entrained 
mix designed for 3-inch to 4-inch slump and 1% inch (maximum size) 
aggregate, the cement content requirements can be compared as in 
Table 5. 

The comparisons serve to show the relative difficulty of meeting 
various specification requirements. The importance of control varies 
considerably with the statistical conditions imposed by the wording 
of the specification., It appears obvious that,for CaseJII and Case IV, 
poor control is unacceptable under any conditions. Furthermore, since 
the means for compensating for it are technically undesirable and 
economically impractical, even "fair" control is not adequate for Case 
III and neither "fair" nor "good" control is adequate for Case IV. 

TABLE 4 

COMPARISON OF AVERAGE STRENGTH REQUIRED FOR 2500 P.S.I. CONCRETE 

Coefficient of Variation (%> 

Case v= 10 v= 15 v=20 v=25 

I 2750 2875 3070 3265 
II 2900 3120 3420 4380 
III 3390 5130 10500* oO* 
IV 4230 6400* 13150* Co* 

*Impractical 
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TABLE 5 

COMPARISON OF APPROXIMATE CEMENT CONTENT (BAGS/CU.YD.) 
REQUIRED FOR 2500 P.S.I. CONCRETE 

(AIR-ENTRAINED, 1%' AGGREGATE, 3" to 4" SLUMP) 

Coefficient of Variation (%) 

. 
Case v = 10 v = 15 v = 20 V = 25 

I 4.8 4.9 5.2 5.4 
II 4.9 502 5.6 702 
III 5.5 8.6 .* * 
IV 6.9 9.5* * * 

*Impractical 

DETERMINING QUALITY OF INSPECTION 

The quality of results of any analysis depends in large part on the 
quality of data used. To determine the quality of the sampling and 
testing phase of the inspection program, the within-test coefficient 
of variation (V,) should be determined whenever there are at least 10 
tests in the inspection test series. For general construction opera- 
tions, the degree of control of sampling and testing operations may 
be judged as shown in Table 6. 

TABLE 6 

QUALITY OF SAMPLING AND TESTING 

Value of "V, " (%) Indicated Degree of Control 

Below 4 
4 to 5 
5 to 6 
Above 6 

Excellent 
Good 
Fair 
Poor 

When the value of V, exceeds 6 percent, the value of the test series 
can be seriously questioned. Further statistical analysis of data 
may lead to misleading results. In such cases the cylinder test results 
should be verified by impact hammer studies or by the taking and testing 
of core samples, or both. If such studies do not verify the cylinder 
test results, enough core samples should be taken to assure good repre- 
sentation, , and the core test results should be used as a basis of 
acceptance or rejection. 
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DETERXINING COMPTJANCE WITH SPECIFICATIONS 

The same statistical methods may be used to advantage in. the inspection 
phase. The manner of their application is different from that used in 
the design phase, since emphasis is on comparison of test results with 
specification requirements. Some of the frequency-distribution factors 
(such as V, a and t) can be estimated with more precision by analysis 
of test data. 

Cumulative distribution curves (see Figure 2) are very useful in esti- 
mating the degree of compliance with specification requirements. This 
is particularly true when the number of tests is small (say 10 to 25) 
and compliance appears to be marginal. This can best be demonstrated 
by means of some examples, as follows: 

1. Example 1 

a. Given: 

(1) The specification calls for a 28-day strength 
of 3000 p.s.i. and states that: "The average 
of all test values as well as the average of 
any 5 consecutive tests shall exceed the 
specified strength and not more than 20 per- 
cent of the tests can have values less than 
the specified strength." 

(2) From the results of 12 strength tests repre- 
senting the quantity of concrete furnished, 
the following data are derived: 

(a) The overall average strength, z equals 
3220 p.s.-i. 

(b) The average of any 5 consecutive tests 
exceeds 3000 p.s.i. 

(c) The values of 3 tests are less than 
3000 p.s.i. 

(d) The computed overall coefficient of 
variation, V, is 0.18 (or 18%). 

(e) The within-test coefficient of 
variation, V1,is 0.04 (or 4%). 
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b. Problem: 

From the above listed data, it is apparent that 
25 percent of the tests have values less than the 
specified strength. Test control appears to be 
good (see Table 6). 
(see Table 3). 

Cve7.All control is only fair 
With only 12 tests to use as a 

basis of measurement, there is some question as to 
how significant the percentage of low test values 
may be. (For example, what is the probability 
that in a longer test series the percentage of 
low tests might be reduced.) Can the concrete be 
accepted as meeting specifications? 

c. Solution: 

The data should be compared with theoretical cumu- 
lative distribution data to determine its probable 
significance, as follows: 

(1) Express the specified strength as a percent- 
age of the average strength: 

fg = gg 0 8 = 93% of z 

(2) Enter the cumulative distribution chart 
(Figure 2) on the curve for V = 18% and find 
the point on the curve that corresponds to 
93 % of average strength on the abscissa. 

(3) On the ordinate scale corresponding to the 
point thus plotted read out the percentage of 
tests that can be expected to have values 
exceeding 93% of the average strength. In 
this case the ordinate scale shows that 65% 
of the tests will probably exceed the speci- 
fied strength; 35% of the tests will proba- 
bly have values 'less than 3000 p.s.i. 

(4) Conclude that the concrete does not meet the 
requirements of the specificatio=ith the 
indicated degree of control (V = 18%). 

2. Example 2 

a. Given: 

The same conditions as given in Example 1, except 
that the overall coefficient of variation, V, is 
0.08 (or 8%). 
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b. Solution: 

(1) Enter the cumulative distribution chart 
(Figure 2) on the curve for V = 8% and 
find the point on the curve that corre- 
sponds to 93% of average strength on the 
abscissa. 

(2) On the ordinate scale, determine that 
80 percent of the samples can be expected 
to have values exceeding the specified 
strength. 

(3) Conclude that the concrete does meet 
specification requirements with the indi- 
cated degree of control (V = 8%). 

3. Example 3 

a. Given: 

(1) A structure subject to severe exposure 
conditions is designed with a conservative 
design strength, fi, of 3000 p.s.i. To 
increase the durability of the structure, 
the specified strength, fy, is stated as 
4000 p.s.i. 

(2) The specification requires that: "The 
average of all test values as well as the 
average of any 5 consecutive tests shall 
exceed the specified strength and not more 
than 20 percent of the tests can have values 
less than the specified strength." 

(3) From the results of 16 strength tests repre- 
senting the quantity of concrete furnished, 
the following data are derived: 

(a) The average strength, z, equals 4300 p.s.i. 

(b) The average of one set of 5 consecutive 
tests is less than 4000 p*s.i. 

(c) The values of 4 tests (not consecutive) 
are less than 4000 p.s.i. 



14 

Cd) 

(4 

The computed overall coefficient of 
variation, V, is 15%, 

The within-test coefficient of vari- 
ation is 3.4%. 

b. Problem: 

It is apparent that 25% of the tests have values less 
than fy and the average of one set of 5 consecutive 
tests is low. Test control is excellent (see Table 6)0 
Overall control is fair (see Table 3). The problem 
is two-fold. Can the concrete be accepted as meeting 
specifications? If not, can the concrete be accepted 
at a reduced payment or must it be removed and 
replaced? 

c. Solution: 

(1) The data should be compared with theoretical 
cumulative distribution data to determine the 
probable degree of conformance with specifi- 
cation requirements, as follows: 

,(a) Expreis f',' in terms of 2: 

f’,’ = 4000 
4300. 

ii = 93% of ii 

(b) From Figure 2, determine that 67% of the 
tests can be expected to exceed fg. 

(c) Concludethattheconcrete does not meet the 
specification requirements. 

(2) Determine whether or not the concrete has adequate 
strength for structural requirements. (Note: For 
general working stress design, the conch can 
be considered to have adequate strength when 80% 
of the test values can be expected to exceed the 
design strength, f,'.) 

(a) Express f: in terms of g: 

f,'=-. 3000 2 = 70% of R 
4300 

(b) From Figure 2, determine that 97.5% of the 
tests can be expected to exceed fJo 
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(cl Conclude that: (1) the strength is 
adequate for structural requirements 
and (2) the concrete may be accepted 
at a lesser price if such a procedure 
is considered more advantageous to 
the owner, considering the probable 
increase in maintenance cost. 

L When small numbers of samples are involved, 4 4. Example 
marginal data should be analyzed even when the concrete 
apparently meets all of the specified requirements. 
The reason for this can be illustrated as follows: 

a. Given: 

(1) The specification requires a 28-day strength 
of 3000 p.s,i. and states that: "The average 
of all tests as well as the average of any 
5 consecutive tests shall exceed the specified 
strength and no test shall have a value less 
than 80 percent of the specified strength." 

(2) From the results of 12 tests all requirements 
appear to be met. 

(3) The average strength, 2, equals 3150 p.s.i. 

(4) The coefficient of variation, V, equals 17%. 

(5) The within-test coefficient of variation, 
VI, equals 3.6%, 

(6) Design strength, fi, equals 3000 p.s.i. 

b. Problem: 

It is apparent that the concrete nominally meets the 
specified strength requirement. Testing control is 
excellent. However, the overall control is only fair 
and the average strength is quite close to the speci- 
fied strength. Because of the small number of samples, 
check the results using cumulative distribution data. 

C. Solution: 

(1) Express O.Sfy as a percentage of X. 
2400 

f',' = - 
3150 l li = 76% of x 
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(2) 

(3) 

(4) 

Many variations 

From Figure 2, determine that 92 percent of 
the tests can be expected to exceed O.Sfi 
(instead of lOO%, as specified). This casts 
doubt on the significance of the nominal 
results, 

Check to see if 80% of tests can be expected 
to exceed the design strength. 

(4 fi 
3000 y 

=3150* 
= 95% of x 

(b) From Figure 2, determine that only 
62 percent of tests can be expected 
to exceed the design strength. 

Conclude that, although the concrete nominally 
meets the strength requirement, a conference 
with the design engineer is needed. Core tests 
may be needed as a ,basis for final decisions on 
the need for remedial action. Under the cir- 
cumstances, the cost of coring and any needed 
repair would have to be borne by the owner. 

of these basic problems may be analyzed by use of the 
cumulative distribution curves. 
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d 

e 

f' 

fb' 

f Cl- 

n 

S 

% 

t 

v 

Vl 

X 

x 

Y 

YO 

- a factor for computing within-test deviation 

- base of Naperian logarithms 

- concrete strength assumed in structural design 

- specified concrete strength 

- average concrete strength required to insure compliance 
with specified requirements 

- number of samples or tests 

- standard deviation 

- within-test standard deviation 

- significance ratio 

- overall coefficient of variation 

- within-test coefficient of variation 

- the value of an individual test 

- the average value of a test series 

- frequency of occurrence 

- frequency of occurrence corresponding to the average value 
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